Specification Sheet

Model No. : ZJY003

Description : 0.49inch OLED Screen resolution 64*32
Size:14.5*11.6mm Driver Chip SSD1306 interface IIC 14Pin
Voltage 3.3V Font Color Option White/Blue ZJY003
Revised History

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Revision</th>
<th>Revision Content</th>
<th>Revised on</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZJY003</td>
<td>A</td>
<td>New</td>
<td>20140626</td>
</tr>
</tbody>
</table>
Contents

Revision History

Contents

1. Basic Specifications
 1.1 Display Specifications
 1.2 Mechanical Specifications
 1.3 Active Area / Memory Mapping & Pixel Construction
 1.4 Mechanical Drawing
 1.5 Pin Definition

2. Absolute Maximum Ratings

3. Optics & Electrical Characteristics
 3.1 Optics Characteristics
 3.2 DC Characteristics
 3.3 AC Characteristics
 3.3.1 I2C Interface Characteristics
 3.3.2 I2C Interface with Internal Charge Pump
 3.3.3 I2C Interface with External VCC

4. Functional Specification
 4.1 Commands
 4.2 Power down and Power up Sequence
 4.2.1 Power up Sequence
 4.2.2 Power down Sequence
 4.3 Reset Circuit
 4.4 Actual Application Example
 4.4.1 VCC Supplied Externally
 4.4.2 VCC Generated by Internal DC/DC Circuit

5. Reliability
 5.1 Contents of Reliability Tests
 5.2 Failure Check Standard

6. Outgoing Quality Control Specifications
 6.1 Environment Required
 6.2 Sampling Plan
 6.3 Criteria & Acceptable Quality Level
 6.3.1 Cosmetic Check (Display Off) in Non-Active Area
 6.3.2 Cosmetic Check (Display Off) in Active Area
 6.3.3 Pattern Check (Display On) in Active Area

7. Package Specifications

8. Precautions When Using These OEL Display Modules
 8.1 Handling Precautions
 8.2 Storage Precautions
 8.3 Designing Precautions
 8.4 Precautions when disposing of the OEL display modules
 8.5 Other Precautions

Warranty

Notice
1. Basic Specifications

1.1 Display Specifications

1) Display Mode: Passive Matrix
2) Display Color: Monochrome (White)
3) Drive Duty: 1/32 Duty

1.2 Mechanical Specifications

1) Outline Drawing: According to the annexed outline drawing
2) Number of Pixels: 64×32
3) Panel Size: $14.5 \times 11.6 \times 1.2$ (mm)
4) Active Area: 11.18×5.58 (mm)
5) Pixel Pitch: 0.175×0.175 (mm)
6) Pixel Size: 0.155×0.155 (mm)
7) Weight: TBD

1.3 Active Area / Memory Mapping & Pixel Construction

![Active Area Diagram]

"A"

Seg95 (Col1) Seg32 (Col32)

Com 47 (Row 2) Com 0 (Row 1)

Com32 (Row 1) Com 15 (Row31)
ICbanQ Inc.

ZJY003 Folding Type OLED Display Module

Pixel Number: 64x32, Monochrome, COG Package

±0.3 mm

Unless Otherwise Specified

Unit Tolerance

Angle Dimension

Title

Date

By

Drawn

Drawing Number

1 of 1 Sheet

Material

Panel / E.E.E. 1:1 Scale

20140523 QG-6432TSWEG02

Notes:

1. Color: White
2. Driver IC: SSD1306
3. FPC Number: QT1306P24
4. Interface: IIC
5. General Tolerance: ±0.30

VCC IREF SDA RES# VDD VSS SCL VCOMH BVBAT C1P C1N C2P C2N VBREF (N.C.)

2 5 7 6 4 3 1
Pin

14.5±0.2 Panel
11.6±0.2 Panel
11.18 A.A
5.58 A.A
6.98 V.A
12.58 V.A
8.6 CAP
1.51
1.66
7.6±0.2 Polarizer
0.5±0.5
0.49"
Dots: 64x32

www.icbanq.com
1.5 Pin Definition

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 8 | VDD | P | Power Supply for Logic
This is a voltage supply pin. It must be connected to external source. |
| 7 | VSS | P | Ground of Logic Circuit
This is a ground pin. It acts as a reference for the logic pins. It must be connected to external ground. |
| 14 | VCC | P | Power Supply for OEL Panel
This is the most positive voltage supply pin of the chip. A stabilization capacitor should be connected between this pin and VSS when the converter is used. It must be connected to external source when the converter is not used. |
| **Driver** | | | |
| 12 | IREF | I | Current Reference for Brightness Adjustment
This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current at 12.5μA maximum. |
| 13 | VCOMH | O | Voltage Output High Level for COM Signal
This pin is the input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and VSS. |
| **DC/DC Converter** | | | |
| 5 | VBAT | P | Power Supply for DC/ DC Converter Circuit
This is the power supply pin for the internal buffer of the DC/DC voltage converter. It must be connected to external source when the converter is used. It should be connected to VDD when the converter is not used. |
| 3 / 4 | C1P / C1N | I | Positive Terminal of the Flying Inverting Capacitor
Negative Terminal of the Flying Boost Capacitor
The charge-pump capacitors are required between the terminals. They must be floated when the converter is not used. |
| 1 / 2 | C2P / C2N | I | |
| **Interface** | | | |
| 9 | RES# | I | Power Reset for Controller and Driver
This pin is reset signal input. When the pin is low, initialization of the chip is executed. Keep this pin pull high during normal operation. |
| **1.5 Pin Definition (Continued)** | | | |
| **Interface (Continued)** | | | |
| 10 | SCL | I | I2C Bus Clock Signal
The transmission of information in the I2C bus is following a clock signal. Each transmission of data bit is taken place during a single clock period of this pin. |
| 11 | SDA | I/O | I2C Bus Data Signal
This pin acts as a communication channel between the transmitter and the receiver. |
| **Reserve** | | | |
| 6 | VBREF | - | NC |
2. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage for Logic</td>
<td>V_{DD}</td>
<td>-0.3</td>
<td>4</td>
<td>V</td>
<td>1, 2</td>
</tr>
<tr>
<td>Supply Voltage for Display</td>
<td>V_{CC}</td>
<td>0</td>
<td>16</td>
<td>V</td>
<td>1, 2</td>
</tr>
<tr>
<td>Supply Voltage for DC/DC (Internal DC/DC Enable)</td>
<td>V_{bat}</td>
<td>-0.3</td>
<td>4.3</td>
<td>V</td>
<td>1, 2</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{OP}</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{STG}</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
<td>3</td>
</tr>
<tr>
<td>Life Time (120 cd/m2)</td>
<td></td>
<td>10,000</td>
<td>-</td>
<td>hour</td>
<td>4</td>
</tr>
<tr>
<td>Life Time (80 cd/m2)</td>
<td></td>
<td>30,000</td>
<td>-</td>
<td>hour</td>
<td>4</td>
</tr>
<tr>
<td>Life Time (60 cd/m2)</td>
<td></td>
<td>50,000</td>
<td>-</td>
<td>hour</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: All the above voltages are on the basis of “$V_{SS} = 0V$”.
Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. “Optics & Electrical Characteristics”. If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.

Note 3: The defined temperature ranges do not include the polarizer. The maximum withstood temperature of the polarizer should be 80°C.

Note 4: $V_{CC} = 7.25V$, $T_{a} = 25°C$, 50% Checkerboard.

Software configuration follows Section 4.4 Initialization.

End of lifetime is specified as 50% of initial brightness reached. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

www.icbanq.com
3. Optics & Electrical Characteristics

3.1 Optics Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness (V_{CC} Supplied Externally)</td>
<td>L_{br}</td>
<td>Note 5</td>
<td>160</td>
<td>-</td>
<td>-</td>
<td>cd/m²</td>
</tr>
<tr>
<td>Brightness (V_{CC} Generated by Internal DC/DC)</td>
<td>L_{br}</td>
<td>Note 6</td>
<td>160</td>
<td>180</td>
<td>-</td>
<td>cd/m²</td>
</tr>
<tr>
<td>C.I.E. (White) (x)</td>
<td>(x)</td>
<td>C.I.E. 1931</td>
<td>0.28</td>
<td>0.32</td>
<td>0.36</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(y)</td>
<td></td>
<td>0.31</td>
<td>0.35</td>
<td>0.39</td>
<td>-</td>
</tr>
<tr>
<td>Dark Room Contrast</td>
<td>CR</td>
<td></td>
<td>-</td>
<td>2000:1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Viewing Angle</td>
<td></td>
<td></td>
<td>-</td>
<td>Free</td>
<td>-</td>
<td>degree</td>
</tr>
</tbody>
</table>

* Optical measurement taken at V_{DD} = 2.8V, V_{CC} = 7.25V.
Software configuration follows Section 4.4 Initialization.

3.2 DC Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage for Logic</td>
<td>V_{DD}</td>
<td>Note 5</td>
<td>1.65</td>
<td>2.8</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>Supply Voltage for Display (Supplied Externally)</td>
<td>V_{CC}</td>
<td>Note 5, Internal DC/DC Disable</td>
<td>7</td>
<td>-</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td>Supply Voltage for DC/DC</td>
<td>V_{sat} Internal DC/DC Enable</td>
<td>3.5</td>
<td>-</td>
<td>4.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage for Display (Generated by Internal DC/DC)</td>
<td>V_{CC} Internal DC/DC Enable</td>
<td>7</td>
<td>7.25</td>
<td>7.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High Level Input</td>
<td>V_{IH} I_{OUT} = 100μA, 3.3MHz</td>
<td>0.8xV_{DD}</td>
<td>-</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low Level Input</td>
<td>V_{IL} I_{OUT} = 100μA, 3.3MHz</td>
<td>0</td>
<td>-</td>
<td>0.2xV_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High Level Output</td>
<td>V_{OH} I_{OUT} = 100μA, 3.3MHz</td>
<td>0.9xV_{DD}</td>
<td>-</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low Level Output</td>
<td>V_{OL} I_{OUT} = 100μA, 3.3MHz</td>
<td>0</td>
<td>-</td>
<td>0.1xV_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating Current for V_{DD}</td>
<td>I_{DD}</td>
<td>-</td>
<td>180</td>
<td>300</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Operating Current for V_{CC} (V_{CC} Supplied Externally)</td>
<td>I_{CC} Note 7</td>
<td>-</td>
<td>5</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Operating Current for V_{sat} (V_{CC} Generated by Internal DC/DC)</td>
<td>I_{sat} Note 8</td>
<td>-</td>
<td>10</td>
<td>15</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Sleep Mode Current for V_{DD}</td>
<td>I_{DD, SLEEP}</td>
<td>-</td>
<td>1</td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Sleep Mode Current for V_{CC}</td>
<td>I_{CC, SLEEP}</td>
<td>-</td>
<td>2</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Note 5 & 6: Brightness (L_{br}) and Supply Voltage for Display (V_{CC}) are subject to the change of the panel characteristics and the customer’s request.

Note 7: V_{DD} = 2.8V, V_{CC} = 7.25V, 100% Display Area Turn on.

Note 8: V_{DD} = 2.8V, V_{CC} = 7.25V, 100% Display Area Turn on.

* Software configuration follows Section 4.4 Initialization.
3.3 AC Characteristics

3.3.1 I^2C Interface Timing Characteristics:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{cycle}})</td>
<td>Clock Cycle Time</td>
<td>2.5</td>
<td>-</td>
<td>(\mu \text{s})</td>
</tr>
<tr>
<td>(t_{\text{HSTART}})</td>
<td>Start Condition Hold Time</td>
<td>0.6</td>
<td>-</td>
<td>(\mu \text{s})</td>
</tr>
<tr>
<td>(t_{\text{H}})</td>
<td>Data Hold Time (for “SDA\text{OUT}” Pin)</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Data Hold Time (for “SDA\text{IN}” Pin)</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{\text{SD}})</td>
<td>Data Setup Time</td>
<td>100</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{SSTART}})</td>
<td>Start Condition Setup Time (Only relevant for a repeated Start condition)</td>
<td>0.6</td>
<td>-</td>
<td>(\mu \text{s})</td>
</tr>
<tr>
<td>(t_{\text{STOP}})</td>
<td>Stop Condition Setup Time</td>
<td>0.6</td>
<td>-</td>
<td>(\mu \text{s})</td>
</tr>
<tr>
<td>(t_{\text{R}})</td>
<td>Rise Time for Data and Clock Pin</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{F}})</td>
<td>Fall Time for Data and Clock Pin</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{IDLE}})</td>
<td>Idle Time before a New Transmission can Start</td>
<td>1.3</td>
<td>-</td>
<td>(\mu \text{s})</td>
</tr>
</tbody>
</table>

* (\(V_{\text{DD}} - V_{\text{SS}} = 1.65\text{V to 3.3V, } T_a = 25^\circ\text{C} \))

[Diagram of I^2C Interface Timing Characteristics]

www.icbanq.com
3.3.2 I²C Interface with Internal Charge Pump

Recommended Components:
- C1: 0.1μF / 6.3V, X5R
- C2: 4.7μF / 6.3V, X5R
- C3: 2.2μF / 16V, X7R
- C4: 4.7μF / 16V, X7R
- C5: 0.1μF / 16V, X7R
- C6, C7: 1μF / 16V, X7R
- R3: 560KΩ, R3 = (Voltage at IREF - VSS) / IREF
- R2, R1: 47kΩ
- R4, R5: 4.7kΩ
- Q1: FDN338P
- Q2: FDN335N

Notes:
- VDD: 1.65~3.3V, it should be equal to MPU I/O voltage.
- VBAT_in: 3.5~4.2V
3.3.3 I²C Interface with External VCC

Recommended Components:

C1: 0.1μF / 6.3V, X5R
C2: 4.7μF / 6.3V, X5R
C3: 2.2μF / 16V, X7R
C4: 4.7μF / 16V, X7R
C5: 0.1μF / 16V, X7R
R3: 560KΩ, R3 = (Voltage at IREF - VSS) / IREF
R2, R1: 47kΩ
R4, R5: 4.7kΩ
Q1: FDN338P
Q2: FDN335N

Notes:

VDD: 1.65~3.3V, it should be equal to MPU I/O voltage.
VCC_in: 7~7.5V

www.icbanq.com
4. Functional Specification

4.1 Commands

Refer to the Technical Manual for the SSD1306

4.2 Power down and Power up Sequence

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

4.2.1 Power up Sequence:
1. Power up V_DD
2. Send Display off command
3. Initialization
4. Clear Screen
5. Power up V_CC / V_BAT
6. Delay 100ms
 (When V_CC is stable)
7. Send Display on command

4.2.2 Power down Sequence:
1. Send Display off command
2. Power down V_CC / V_BAT
3. Delay 100ms
 (When V_CC / V_BAT is reach 0 and panel is completely discharges)
4. Power down V_DD

Note 13:
1) Since an ESD protection circuit is connected between V_DD and V_CC inside the driver IC, V_CC becomes lower than V_DD whenever V_DD is ON and V_CC is OFF.
2) V_CC / V_BAT should be kept float (disable) when it is OFF.
3) Power Pins (V_DD, V_CC, V_BAT) can never be pulled to ground under any circumstance.
4) V_DD should not be power down before V_CC / V_BAT power down.

4.3 Reset Circuit

When RES# input is low, the chip is initialized with the following status:
1. Display is OFF
2. 128×64 Display Mode
3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)
4. Shift register data clear in serial interface
5. Display start line is set at display RAM address 0
6. Column address counter is set at 0
7. Normal scan direction of the COM outputs
8. Contrast control register is set at 7Fh
9. Normal display mode (Equivalent to A4h command)
4.4 Actual Application Example
Command usage and explanation of an actual example

4.4.1 V\text{CC} Supplied Externally

<Power up Sequence>

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.
<Power down Sequence>

Normal Operation

Set Display Off 0xAE

Power down Vcc (100ms Delay Recommended)

Vdd/Vcc off State

Power down Vdd

<Entering Sleep Mode>

Normal Operation

Set Display Off 0xAE

Power down Vcc

Sleep Mode

<Exiting Sleep Mode>

Sleep Mode

Power up Vcc & Stabilized (Delay Recommended)

Normal Operation

Set Display On 0xAF

(100ms Delay Recommended)

External setting

void SSD1306()
{
 RES=0;
 delay(1000);
 RES=1;
 delay(1000);

 write_i(0xAE); /*display off*/

 write_i(0x00); /*set lower column address*/
 write_i(0x12); /*set higher column address*/

 write_i(0x00); /*set display start line*/

 write_i(0xB0); /*set page address*/
void write_w(unsigned char dat)
{
 unsigned char m, da;
 unsigned char j;
 da = dat;
 for (j = 0; j < 8; j++)
 {
 m = da;
 SCL = 0;
 m = m & 0x80;
 if (m == 0x80)
 {
 SDA = 1;
 }
 else
 {

```
void write_i(unsigned char ins)
{
    start();
    write_w(0x78);
    write_w(0x00);
    write_w(ins);
    stop();
}

void write_d(unsigned char dat)
{
    start();
    write_w(0x78);
    write_w(0x40);
    write_w(dat);
    stop();
}

void start()
{
    SCL=1;
    SDA=1;
    SDA=0;
    SCL=0;
}

void stop()
{
    SCL=0;
    SDA=0;
    SDA=1;
    SCL=1;
}

void delay(unsigned int t)
{
    while(t>0)
    {
        t--;
    }
}
4.4.2 V\textsubscript{CC} Generated by Internal DC/DC Circuit

*<Power up Sequence>*

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.
<Power down Sequence>

Normal Operation

Set Display Off
0xAE

Set Charge Pump
0x8D, 0x10

Power down VBAT
(50ms Delay Recommended)

Power down VDD

Power Stabilized
(100ms Delay Recommended)

VDD/ VBAT off State

<Exiting Sleep Mode>

Sleep Mode

Power up VBAT
(100ms Delay Recommended)

Set Charge Pump
0x8D, 0x14

Set Display On
0xAF

Normal Operation

<Entering Sleep Mode>

Normal Operation

Set Display Off
0xAE

Set Charge Pump
0x8D, 0x10

Power down VBAT

Sleep Mode

Internal setting (Charge pump)

void SSD1306()
{
    RES=0;
    delay(1000);
    RES=1;
    delay(1000);

    write_i(0xAE);  /*display off*/

    write_i(0x00);  /*set lower column address*/
    write_i(0x12);  /*set higher column address*/
}

www.icbanq.com
write_i(0x00) ; /*set display start line*/
write_i(0xB0) ; /*set page address*/
write_i(0x81) ; /*contract control*/
write_i(0x4f) ; /*128*/
write_i(0xA1) ; /*set segment remap*/
write_i(0xA6) ; /*normal / reverse*/
write_i(0xA8) ; /*multiplex ratio*/
write_i(0x1F) ; /*duty = 1/32*/
write_i(0xC8) ; /*Com scan direction*/
write_i(0xD3) ; /*set display offset*/
write_i(0x00);
write_i(0xD5) ; /*set osc division*/
write_i(0x80);
write_i(0xD9) ; /*set pre-charge period*/
write_i(0x1f);
write_i(0xDA) ; /*set COM pins*/
write_i(0x12);
write_i(0xdb) ; /*set vcomh*/
write_i(0x40);
write_i(0x8d) ; /*set charge pump enable*/
write_i(0x14);
write_i(0xAF) ; /*display ON*/
}
void write_w(unsigned char dat)
{
    unsigned char m,da;
    unsigned char j;
    da=dat;
    for(j=0;j<8;j++)
    {
        m=da;
        SCL=0;
        m=m&0x80;
        if(m==0x80)
{ 
    SDA=1;
}
else 
{ 
    SDA=0;
}
da=da<<1;
SCL=1;
}
SCL=0;
SCL=1;

void write_i(unsigned char ins)
{
    start();
    write_w(0x78);
    write_w(0x00);
    write_w(ins);
    stop();
}

void write_d(unsigned char dat)
{
    start();
    write_w(0x78);
    write_w(0x40);
    write_w(dat);
    stop();
}

void start()
{
    SCL=1;
    SDA=1;
    SDA=0;
    SCL=0;
}

void stop()
{
    SCL=0;
    SDA=0;
    SDA=1;
    SCL=1;
}
void delay(unsigned int t)
{
    while(t>0)
    {
        t--;
    }
}
5. **Reliability**

5.1 Contents of Reliability Tests

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditions</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature Operation</td>
<td>70°C, 240 hrs</td>
<td></td>
</tr>
<tr>
<td>Low Temperature Operation</td>
<td>-40°C, 240 hrs</td>
<td></td>
</tr>
<tr>
<td>High Temperature Storage</td>
<td>85°C, 240 hrs</td>
<td></td>
</tr>
<tr>
<td>Low Temperature Storage</td>
<td>-40°C, 240 hrs</td>
<td></td>
</tr>
<tr>
<td>High Temperature/Humidity Operation</td>
<td>60°C, 90% RH, 120 hrs</td>
<td>The operational functions work.</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>-40°C ⇔ 85°C, 24 cycles 60 mins dwell</td>
<td></td>
</tr>
</tbody>
</table>

* The samples used for the above tests do not include polarizer.
* No moisture condensation is observed during tests.

5.2 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5°C; 55±15% RH.
6. Outgoing Quality Control Specifications

6.1 Environment Required

Customer’s test & measurement are required to be conducted under the following conditions:

- **Temperature:** 23 ± 5°C
- **Humidity:** 55 ± 15% RH
- **Fluorescent Lamp:** 30W
- **Distance between the Panel & Lamp:** ≥ 50cm
- **Distance between the Panel & Eyes of the Inspector:** ≥ 30cm
- Finger glove (or finger cover) must be worn by the inspector.
- Inspection table or jig must be anti-electrostatic.

6.2 Sampling Plan

Level II, Normal Inspection, Single Sampling, MIL-STD-105E

6.3 Criteria & Acceptable Quality Level

<table>
<thead>
<tr>
<th>Partition</th>
<th>AQL</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>0.65</td>
<td>Defects in Pattern Check (Display On)</td>
</tr>
<tr>
<td>Minor</td>
<td>1.0</td>
<td>Defects in Cosmetic Check (Display Off)</td>
</tr>
</tbody>
</table>

6.3.1 Cosmetic Check (Display Off) in Non-Active Area

<table>
<thead>
<tr>
<th>Check Item</th>
<th>Classification</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| Panel General Chipping | Minor          | X > 6 mm (Along with Edge)  
Y > 1 mm (Perpendicular to edge) |
### 6.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued)

<table>
<thead>
<tr>
<th>Check Item</th>
<th>Classification</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Crack</td>
<td>Minor</td>
<td>Any crack is not allowable.</td>
</tr>
<tr>
<td>Copper Exposed (Even Pin or Film)</td>
<td>Minor</td>
<td>Not Allowable by Naked Eye Inspection</td>
</tr>
<tr>
<td>Film or Trace Damage</td>
<td>Minor</td>
<td></td>
</tr>
<tr>
<td>Terminal Lead Prober Mark</td>
<td>Acceptable</td>
<td></td>
</tr>
<tr>
<td>Glue or Contamination on Pin (Couldn’t Be Removed by Alcohol)</td>
<td>Minor</td>
<td></td>
</tr>
<tr>
<td>Ink Marking on Back Side of panel (Exclude on Film)</td>
<td>Acceptable</td>
<td>Ignore for Any</td>
</tr>
</tbody>
</table>
6.3.2 Cosmetic Check (Display Off) in Active Area

It is recommended to execute in clear room environment (class 10k) if actual in necessary.

<table>
<thead>
<tr>
<th>Check Item</th>
<th>Classification</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Dirt &amp; Scratch on Polarizer's Protective Film</td>
<td>Acceptable</td>
<td>Ignore for not Affect the Polarizer</td>
</tr>
<tr>
<td>Scratches, Fiber, Line-Shape Defect (On Polarizer)</td>
<td>Minor</td>
<td>( W \leq 0.1 ) ( W &gt; 0.1 ) ( L \leq 2 ) ( L &gt; 2 )</td>
</tr>
<tr>
<td>Dirt, Black Spot, Foreign Material, (On Polarizer)</td>
<td>Minor</td>
<td>( \Phi \leq 0.1 ) ( 0.1 &lt; \Phi \leq 0.25 ) ( 0.25 &lt; \Phi )</td>
</tr>
<tr>
<td>Dent, Bubbles, White spot (Any Transparent Spot on Polarizer)</td>
<td>Minor</td>
<td>( \Phi \leq 0.5 ) Ignore if no Influence on Display ( 0.5 &lt; \Phi )</td>
</tr>
<tr>
<td>Fingerprint, Flow Mark (On Polarizer)</td>
<td>Minor</td>
<td>Not Allowable</td>
</tr>
</tbody>
</table>

* Protective film should not be tear off when cosmetic check.

** Definition of W & L & \( \Phi \) (Unit: mm): \( \Phi = (a + b) / 2 \)

![Diagram](image_url)
### 6.3.3 Pattern Check (Display On) in Active Area

<table>
<thead>
<tr>
<th>Check Item</th>
<th>Classification</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Display</td>
<td>Major</td>
<td><img src="image" alt="No Display" /></td>
</tr>
<tr>
<td>Missing Line</td>
<td>Major</td>
<td><img src="image" alt="Missing Line" /></td>
</tr>
<tr>
<td>Pixel Short</td>
<td>Major</td>
<td><img src="image" alt="Pixel Short" /></td>
</tr>
<tr>
<td>Darker Pixel</td>
<td>Major</td>
<td><img src="image" alt="Darker Pixel" /></td>
</tr>
<tr>
<td>Wrong Display</td>
<td>Major</td>
<td><img src="image" alt="Wrong Display" /></td>
</tr>
<tr>
<td>Un-uniform</td>
<td>Major</td>
<td><img src="image" alt="Un-uniform" /></td>
</tr>
</tbody>
</table>
7. Package Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module</td>
<td>810 per Primary Box</td>
</tr>
<tr>
<td>Holding Trays (A)</td>
<td>15 per Primary Box</td>
</tr>
<tr>
<td>Total Trays (B)</td>
<td>16 per Primary Box (Including 1 Empty Tray)</td>
</tr>
<tr>
<td>Primary Box (C)</td>
<td>1–4 per Carton (4 as Major / Maximum)</td>
</tr>
</tbody>
</table>

www.icbanq.com
8. Precautions When Using These OEL Display Modules

8.1 Handling Precautions

1) Since the display panel is being made of glass, do not apply mechanical impacts such as dropping from a high position.

2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.

3) If pressure is applied to the display surface or its neighborhood of the OEL display module, the cell structure may be damaged and be careful not to apply pressure to these sections.

4) The polarizer covering the surface of the OEL display module is soft and easily scratched. Please be careful when handling the OEL display module.

5) When the surface of the polarizer of the OEL display module has soil, clean the surface. It takes advantage of by using following adhesion tape.
   * Scotch Mending Tape No. 810 or an equivalent
Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy. Also, pay attention that the following liquid and solvent may spoil the polarizer:
   * Water
   * Ketone
   * Aromatic Solvents

6) Hold OEL display module very carefully when placing OEL display module into the system housing. Do not apply excessive stress or pressure to OEL display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.

7) Do not apply stress to the driver IC and the surrounding molded sections.

8) Do not disassemble nor modify the OEL display module.

9) Do not apply input signals while the logic power is off.

10) Pay sufficient attention to the working environments when handling OEL display modules to prevent occurrence of element breakage accidents by static electricity.
    * Be sure to make human body grounding when handling OEL display modules.
    * Be sure to ground tools to use or assembly such as soldering irons.
    * To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
    * Protective film is being applied to the surface of the display panel of the OEL display module. Be careful since static electricity may be generated when exfoliating the protective film.

11) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the OEL display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5).

12) If electric current is applied when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.
8.2 Storage Precautions

1) When storing OEL display modules, put them in static electricity preventive bags avoiding exposure to direct sunlight nor to lights of fluorescent lamps and, also, avoiding high temperature and high humidity environment or low temperature (less than 0°C) environments. (We recommend you to store these modules in the packaged state when they were shipped from Allvision technology Inc.) At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.

2) If electric current is applied when water drops are adhering to the surface of the OEL display module, when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.

8.3 Designing Precautions

1) The absolute maximum ratings are the ratings which cannot be exceeded for OEL display module, and if these values are exceeded, panel damage may be happen.

2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the $V_{IL}$ and $V_{IH}$ specifications and, at the same time, to make the signal line cable as short as possible.

3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit ($V_{DD}$).
   (Recommend value: 0.5A)

4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices.

5) As for EMI, take necessary measures on the equipment side basically.

6) When fastening the OEL display module, fasten the external plastic housing section.

7) If power supply to the OEL display module is forcibly shut down by such errors as taking out the main battery while the OEL display panel is in operation, we cannot guarantee the quality of this OEL display module.

8) The electric potential to be connected to the rear face of the IC chip should be as follows: SH1106
   * Connection (contact) to any other potential than the above may lead to rupture of the IC.

8.4 Precautions when disposing of the OEL display modules

1) Request the qualified companies to handle industrial wastes when disposing of the OEL display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.

8.5 Other Precautions

1) When an OEL display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur. Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module.

2) To protect OEL display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OEL display modules.
   * Pins and electrodes
   * Pattern layouts such as the FPC

3) With this OEL display module, the OEL driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if this OEL driver is exposed to light, malfunctioning may occur.
   * Design the product and installation method so that the OEL driver may be shielded from light in actual usage.
   * Design the product and installation method so that the OEL driver may be shielded from light during the inspection processes.

4) Although this OEL display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may
be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design.

5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.