Features:
- Wide operating range 3.0~12V, -40℃~125℃
- Flat Response to 23kHz
- High Sensitivity 3.0mV/G
- Wide sensible magnetic field range on different supplied voltage
  ±600 Gauss on 5V supplied voltage
  ±1500 Gauss on 12V supplied voltage. Low operating current 3mA
- Two package styles TO-92S/SOT-23 available.
- Built-in temperature compensated circuit to minimize temperature’s effect

Functional Description:
The W136 integrates Hall sensing element, linear amplifier, sensitivity controller and emitter follower output stage. It accurately tracks extremely small change in magnetic flux density --generally too small to operate Hall effect switch.

W136 can be applied as current sensor, tooth sensor, proximity detectors and motion detectors. As sensitive monitor of magnetic flux, it can effectively measure a system’s performance with negligible system loading while providing isolation from contaminated and electrically noisy environments.
### Electrical Characteristics:  \((T=+25^\circ \text{C}, \text{Vdd}=5.0\text{V})\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vcc</td>
<td>—</td>
<td>3.0</td>
<td>—</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Isupply</td>
<td>B=0 Gauss</td>
<td>3.0</td>
<td>5.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Quiescent Vout</td>
<td>V0G</td>
<td>B=0 G (Grade A)</td>
<td>2.45</td>
<td>2.5</td>
<td>2.55</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B=0 G (Grade B)</td>
<td>2.35</td>
<td>2.5</td>
<td>2.65</td>
<td>V</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>(\Delta V_{\text{out}})</td>
<td>B=0 to (\pm 500) G</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>mV/G</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>BW</td>
<td>—</td>
<td>23</td>
<td>—</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Measurable Guass</td>
<td>MGR</td>
<td>Vdd=5V</td>
<td>—</td>
<td>(\pm 600)</td>
<td>—</td>
<td>Guass</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td>Vdd=12V</td>
<td>—</td>
<td>(\pm 1500)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Temperature Drift</td>
<td>(\Delta V_{\text{out}})</td>
<td>B=0 Gauss</td>
<td>—</td>
<td>(\pm 0.3)</td>
<td>—</td>
<td>mV/(\text{C})</td>
</tr>
</tbody>
</table>

All output-voltage measurements are made with a voltmeter having an input impedance of at least 100\(\Omega\).

Winson reserves the right to make changes to improve reliability or manufacturability.

©Winson, 2014/1/15
Package Information:

TO92S:

Hall Sensor Location

SOT23:

Winson reserves the right to make changes to improve reliability or manufacturability.

©Winson, 2014/1/15
Electrical Characteristic Diagram:

**WSH136 Sensitivity standardization of 30°C VS. Temperature**

- Ratio values: 0.823, 0.881, 0.925, 0.962, 0.983, 0.995, 1.000, 1.000, 0.989, 0.976, 0.959, 0.933, 0.906, 0.882, 0.849, 0.810, 0.772, 0.737

**WSH136 Vout vs. Magnetic Field with Vdd 5V**

- Equation: \( y = 0.0028x + 2.485 \)
- \( R^2 = 0.9997 \)

**WSH136 Vout vs. Magnetic Field with Vdd 3.3V**

- Equation: \( y = 0.0024x + 1.7022 \)
- \( R^2 = 0.9985 \)
Winson reserves the right to make changes to improve reliability or manufacturability.

©Winson, 2014/1/15